If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x-442=0
a = 2; b = -8; c = -442;
Δ = b2-4ac
Δ = -82-4·2·(-442)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-60}{2*2}=\frac{-52}{4} =-13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+60}{2*2}=\frac{68}{4} =17 $
| -56/h=8 | | (y•3)-1=30 | | 7(y-84)=77 | | q-2/3=q-1/q+3 | | 2(x+6)=5x+1-3x | | 7-3x=-x+11 | | (x+8)^2=4 | | 4a-9=3+a | | 4x^2-16x+884=0 | | x=180-125 | | -32/31/36=-3/1/2(-8/3a+1/2) | | -189=b–792 | | Y=(4/3)x-16.67 | | 2/3x+4=4/5-2 | | 4x^+20=0 | | 3k+k+5k-2k=14 | | -4(2x=1)=-8x-4 | | 0.25112-0.86x=x^2 | | 5v-v-3v=18 | | 2(p+1)+2=10 | | 3(j-6)-7=-4 | | x+12+x+12=4x-16 | | 1.2x+7=4.2x-5 | | 2/c=-1 | | 7=3(z+1)-5 | | b–-62=874 | | 4(d+3)=16 | | 3m+8+5m=48 | | 0=-16t^2+20t+19 | | 22=-7×n | | 3g+5=27 | | 0=3(n+4)-6 |